Automatic generation of basis test paths using variable length genetic algorithm
نویسنده
چکیده
a r t i c l e i n f o a b s t r a c t Path testing is the strongest coverage criterion in white box testing. Finding target paths is a key challenge in path testing. Genetic algorithms have been successfully used in many software testing activities such as generating test data, selecting test cases and test cases prioritization. In this paper, we introduce a new genetic algorithm for generating test paths. In this algorithm the length of the chromosome varies from iteration to another according to the change in the length of the path. Based on the proposed algorithm, we present a new technique for automatically generating a set of basis test paths which can be used as testing paths in any path testing method. The proposed technique uses a method to verify the independency of the generated paths to be included in the basis set of paths. In addition, this technique employs a method for checking the feasibility of the generated paths. We introduce new definitions for the key concepts of genetic algorithm such as chromosome representation, crossover, mutation, and fitness function to be compatible with path generation. In addition, we present a case study to show the efficiency of our technique. We conducted a set of experiments to evaluate the effectiveness of the proposed path generation technique. The results showed that the proposed technique causes substantial reduction in path generation effort, and that the proposed GA algorithm is effective in test path generation.
منابع مشابه
Optimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملAutomatic Data Flow Test Paths Generation using the Genetical Swarm Optimization Technique
Path testing requires generating all paths through the program to be tested, and finding a set of program inputs that will execute every path. The number of possible paths in programs containing loops is infinite, and so it is very difficult, if not impossible, to test all of them. Path testing can be relaxed by selecting a subset of all executable paths that fulfill a certain path selection cr...
متن کاملAutomatic Generation of Data Flow Test Paths using a Genetic Algorithm
Path testing a program involves generating all paths through the program, and finding a set of program inputs that will execute every path. Since it is impossible to cover all paths in a program, path testing can be relaxed by selecting a subset of all executable paths that fulfill a certain path selection criterion and finding test data to cover it. The automatic generation of such test paths ...
متن کاملGA-based Automatic Test Data Generation for UML State Diagrams with Parallel Paths
Automatic test data generation from a software specification prepares test cases for software developers before their code development phase. Having test cases before coding, helps the developers to control their code to conform to the specification. In state-based specifications, paths from the initial state to the final state may be varied, this is called parallel paths. In order to generate ...
متن کاملRobot Path Planning Using Cellular Automata and Genetic Algorithm
In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 114 شماره
صفحات -
تاریخ انتشار 2014